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The convolution approximation of Vineyard to treat the coherent scattering of slow neutrons by a mon-
atomic liquid is extended. The correction term, which takes care of correlations between neighboring atoms, 
is evaluated on the basis of a "quasicrystalline" model of a liquid. In the calculation proper account is, how
ever, taken of the geometrical arrangement and dynamical behavior of atoms in a liquid. Expression for the 
width of the "quasielastic" scattering is derived which exhibits a characteristic oscillatory behavior as a func
tion of momentum transfer. Explicit numerical calculations for the width have been made for liquid argon 
near the triple point, which are in reasonably good agreement with experiment. An interesting feature of the 
basic formula of the paper is the temperature dependence of the width for a given momentum transfer, which 
is also in qualitative agreement with experiment. There are other features which need to be tested by further 
experiments, suggestions for which have been outlined. 

I. INTRODUCTION 

DURING recent years considerable effort, both 
theoretical and experimental, has been directed 

towards understanding the scattering of slow neutrons 
by an incoherent liquid. Comparatively, little experi
mental work has been done with a coherent liquid, 
despite the fact that most liquids, and particularly the 
simple ones, are coherent scatterers—one of the reasons 
being the lack of a theory on the basis of which coherent 
effects could be analyzed. Coherent scattering is obvi
ously far more complex than incoherent, since the latter 
involves only the self-motion of an atom whereas the 
former involves the correlated motion of different atoms 
in a liquid. To treat coherent scattering, Vineyard1 

proposed his convolution approximation, which con
nects the coherent to the incoherent scattering through 
the Fourier transform of the static-pair correlation 
function of a liquid, which is known experimentally. 
The great virtue of this approximation lies in the fact 
that, besides being simple, it does not introduce any 
adjustable parameter in the theory. Unfortunately, the 
convolution approximation is not fully borne out by 
experimental facts and seems to have validity only 
over a limited range of momentum transfer. In fact, 
recently Brockhouse et al? have pointed out that the 
oscillations in the width of the "quasielastic" scattering 
of 4.06-A neutrons in liquid argon as a function of 
momentum transfer which they have observed, could 
not be explained by the convolution approximation. 
Earlier, Palevsky,3 Brockhouse and Pope,4 and others 
had also remarked that this approximation was not in 
accord with their observations. 

* Based on work performed under the auspices of the U. S. 
Atomic Energy Commission. 

1 G. H. Vineyard, Phys. Rev. 110, 999 (1958). 
2 B . N. Brockhouse, J. Bergsma, B. A. Dasannacharya, and 

N. K. Pope, Inelastic Scattering of Neutrons in Solids and Liquids 
(International Atomic Energy Agency, Vienna, 1963), Vol. 1, 
p. 189. 

3 H. Palevsky, Inelastic Scattering of Neutrons in Solids and 
Liquids (International Atomic Energy Agency, Vienna, 1961), 
p. 265. 

4 B . N. Brockhouse and N. K. Pope, Phys. Rev. Letters 3, 
259 (1959). 

A 

The present paper is an attempt in the direction of 
improving upon the convolution approximation. This 
improvement is based on two basic assumptions: (a) 
that the convolution approximation is valid for atoms 
whose distance of separation is greater than a certain 
distance R which occurs as a parameter in the theory; 
and (b) that the correction term can be evaluated 
analogously to the case of a harmonic solid, with due 
care regarding the geometrical arrangement and dy
namical behavior of atoms in a liquid. Both these 
assumptions, in particular assumption (b), are hard to 
justify. They are, however, made with reliance on 
physical intuition and should be judged by the success 
of the results they yield. The basic formula derived 
here for the scattering function S(K,O>) should in general 
be valid for all coherent monatomic liquids for small and 
intermediate values of the momentum transfer K. Ex
plicit numerical calculations for the half-width of the 
"quasielastic" scattering as a function of K have been 
made for liquid argon near the triple point, and are 
surprisingly in good agreement with experiment.2 Our 
basic formula, undoubtedly quite crude, has, neverthe
less, several interesting features which should be tested 
by future experiments. 

II. CONVOLUTION APPROXIMATION 

The differential scattering cross section can be written 
in the following form5: 

(i) 

(2) 

(3) 

(4) 

and 

where 

and 

d2acoh/dQdo) = iVtfcoh2{k/ko)S<soh(K,OO) , 

d2(Tinc/dttda)=A^inc2 (k/ko)Sinc (K,W) ; 

Scoh(K,co) = — / e~iutF{^t)dt, 
2irJ 

Sino(K,w) = — / e-i(atFs(K,t)dt. 
2TTJ 

The intermediate scattering functions F occurring in 

5 L. Van Hove, Phys. Rev. 95, 249 (1954). 
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the above equations are denned by 

F(K,0 = iV-1E<exppK.R„(0)] 

XexpC-fK-R^O])* , (5) 
and 

FS(K,() = N-1 L ( e x p [ > . R a ( 0 ) ] 

Xexp[- fK-R«(0]>r , (6) 

and are, respectively, the space transforms of the now 
well known G(t,i) and G8(r,t) functions introduced by 
Van Hove.5 fua and fiK are, respectively, the energy and 
momentum transfers and are related to the incident 
and final wave vectors k0 and k of the neutron through 
the relations 

K = k 0 - k (7) 
and 

tiG>=(fi2/2rn)(ko2-k2), (8) 

where m is the neutron mass. The other symbols occur
ring in Eqs. (l)-(6) have their usual meaning. R^(0 is 
the position vector of the /3th atom at time t in the 
Heisenberg representation. We shall not discuss the 
properties of either the G or the F functions since they 
are well known. 

The convolution approximation consists in writing 
F(*t,t) as 

F ( K ) I ) ^ F ( K , 0 ) F , ( K ) I ) , (9) 

which follows from the assumption that the bracket 
(• • • )T in (5) after introducing the identity operator 
exppK«Ry(0)] exp[—^K«Rj(0)] can be broken up into 
a product of two factors. This amounts to assuming1 

that the motion of an atom P situated at r ' at time zero 
from an atom a at the origin at time zero, is independent 
of the presence of the atom a. The most obvious defect 
of this approximation is a geometrical one. As Vineyard1 

clearly points out, it is difficult to know the error in 
this approximation, but qualitative considerations sug
gest that it may be good for small values of K, i.e., 
large r. The exact domain of K values for which this 
approximation is valid is hard to know. Its merit, 
however, lies in the simplicity and direct way in which 
it connects the coherent to the incoherent scattering. 

Now there are two objections against the convolution 
approximation. The first, and the one which is very 
often cited, is that it violates the moment relation 

( a W % v — - — — — = K 2 [ 1 / ^ ( K , 0 ) ] , (10) 
fScoh{Kyo))do) M 

as pointed out by De Gennes.6 From (9), however, it 
follows that 

V^coh / a v . c o n " K — ^COjnc j a v j 

M 

6 P. G. De Gennes, Inelastic Scattering of Neutrons in Solids and 
Liquids (International Atomic Energy Agency, Vienna, 1961), 
p. 239. 

and hence the convolution approximation violates the 
moment relation (10). The second objection, also first 
pointed by De Gennes6 and later on more explicitly 
stated by Singwi and Sjolander,7 is that in the limit 
K—>0 (case of light scattering by a liquid) the con
volution approximation predicts an undisplaced Ray-
leigh line whose width is determined by the macroscopic 
self-diffusion constant, whereas in actual fact one gets 
three lines—the central Rayleigh line corresponding to 
entropy fluctuations and the two displaced Brillouin-
Mandelstam components corresponding to density 
fluctuations. The width of the former is determined by 
the coefficient of heat diffusion and that of the latter 
by the coefficients of heat conduction and viscosity. 
Thus we see that the convolution approximation fails 
the test wherever it is possible to test it rigorously. 
Nevertheless, this does not preclude its usefulness, as 
has often been stated by the author and as will be evi
dent in the sequel. 

We mentioned earlier that for small K and o> values, 
the convolution approximation might be good. This can 
be seen from the following argument. For small values 
of K, the function 5(K,CO) has a very pronounced peak 
near co~0 and, therefore, the major contribution to 
the integral in the denominator of (10) comes from 
under this peak. In this region of K and co values we 
therefore apply the Vineyard approximation and calcu
late 5'coh(K,co). On the other hand, the major contribu
tion to the integral in the numerator of (10) comes 
from large co values, for which, as we know in solids, 
the incoherent approximation should be good. I t then 
follows that 

(<Ocoh2)av 

= = ( W i n o 2) f 1, (11) 
F(Kfi)fdo:fFs(K,t)e~io3tdt \F(K90) I 

which is the same as (10). Under the above-mentioned 
assumptions the convolution approximation, therefore, 
does not violate the moment relation (10). The argu
ment is obviously approximate. 

The second objection appears to us somewhat unfair 
in the sense that the convolution approximation was 
never intended to be applied to such long-range correla
tions—correlations which are in the "hydrodynamic" 
range and should indeed be calculated from the hydro-
dynamic equations of a liquid. 

The range of K values which one normally encounters 
in slow-neutron scattering by a liquid lies between 
K = 0 . 2 and 4 A - 1 or more. Surely, in this range interest
ing effects occur which are not covered by the convolu
tion approximation. For example, it was pointed out by 

7 K. S. Singwi and A. Sjolander, Phys. Letters 9, 120 (1964). 
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De Gennes8 from a very general analysis of second and 
fourth moments of SCoh(K,oo) that for values of K corre
sponding to one of the diffraction peaks in the x-ray 
pattern, i.e., F(K,0) , the ratio (a>coh

4)av/3(coCOh2)av2 be
comes large, since (cocoh

2)av becomes small, as is evident 
from (10). This implies for such K values a distribution 
<Scoh(K,co) which is broad in the wings and narrow at the 
center. This narrowing effect predicted by De Gennes 
has unquestionably been observed by Brockhouse et al.2 

De Gennes gave a recipe for the half-width of the dis
tribution as a function of K which has a characteristic 
oscillatory behavior. However, as De Gennes himself 
mentions, many important questions, such as the tem
perature dependence of the width, the shape of 6*coh(K,co) 
when K is kept constant on a maximum of F(K,0) , and 
others, remain unanswered. We shall in what follows 
attempt to answer these questions by extending the 
convolution approximation of Vineyard. 

III. MATHEMATICAL FORMULATION 

Equation (5) can be written as 

F(K,0 = F.(IC,0 
<R 

+N-1 E <exppK-R„(0)] exp[-t"K-R0(0]>r 

>R 
+N~i E (exppK- Ra(0)] exp[-*K. R^)]>r , 

«*> (12) 
where the index <R on the summation sign means that 
for a given a we sum over all atoms p which lie within 
a sphere of arbitrary radius R drawn with a as the 
center, and the index > R means all atoms 0 lying out
side this sphere. This is a trivial step splitting the sum 
into two parts. Our first basic assumption is that for all 
atoms such that \ R«— Rp | > R, wt can apply the Vineyard 
approximation. In other words, we assume that when 
atoms a and fi are far separated, i.e., for large R, which 
implies K small, the motion of /3 is uninfluenced by the 
presence of a. Equation (12) then becomes 

>R 

*,(ic,/) = F.(ic,0+iVr-1 E <exppK.Ra(0)] exp[-zK-R^(0)])r 

<R 
X(exppK-Rj(0)] e x p [ - f i c - R ^ ) ] ) * ^ " 1 E (exppK-R«(0)] exp[-iic.R*(0]>r> 

which can be rewritten as 

>R 
F(KJ/) = -P,.(K,/)+iV-1 E <exppK-Ra(0)] expC-fK-R/sfO^sKexppK-R/jCO)] exp[-»K-R^(0])r 

<R 
+N-1 E (exppK-R«(0)] expC-fK-R/iCOJDMexppK-R/jfO)] expC-iK.R/,(0]>r 

<R 
+N~'Z <exp[tK.Ra(0)] expC-fK.R^O])^ 

<R 

- A ^ E <exppK-R«(0)] expC-iK-R^WXexppK-R^O)] exp[ -^ .R^(0 ] ) r , (13) 

where we have added and subtracted the same term. Combining the second and the third terms in (13) we can 
write it as 

<R 

F(K,0 = [ l+r(K)]F s (K,0+^- 1 E <exppK.R„(0)] expC-iK-R^/)]^ 

<R 
-N~l E <exp[fK-R«(0)] exp[-^.R^(0)])r(exppK.R^(0)] exp[ -^ .R^(0 ] ) r , (14) 

where 

M-/ r («)= I g(r)eiK-Tdr (15) 

is the Fourier transform of the static pair correlation function g(r), which is defined by 

g(t)=N-i £ <8(R„(0)-R„(0)-r)>r. (16) 

8 P. G. De Gennes, Physica 25, 825 (1959). 
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In the Appendix we have defined T(K) through Eq. (A3), which is the same as Eq. (15) except for the term in
volving go, which gives a contribution only for K = 0 . 

If we neglect the last two terms in (14), we get the convolution approximation. They, therefore, represent a 
correction to the Vineyard approximation. We shall henceforth denote them by H(KJ). 

<R <R 
H(K,t)^N~l E <exppK.Ra(0)] e x p C - ^ K . R ^ / ) ] ) ^ - ^ - 1 £ (exppK-R«(0)] exp[-»K-R /i(0)]> r 

X<exppK.R jS(0)] e x p C - ^ - R ^ ) ] ^ . (17) 

The main problem now is to evaluate H(K,£), and it is here that our second assumption enters. We assume that it 
can be treated analogously to the case of a harmonic solid. This is prima facie an ad hoc assumption; but it is based on 
the physical idea that the main contribution to Hfat) arises from times during which the atoms have not moved 
far from the positions they had at time £ = 0. In fact, the essential idea behind a "quasicrystalline" model of a 
liquid is that the atoms do stay in their temporary equilibrium positions for a time which is greater than a few 
times their period of oscillation. During this time all that the atoms do is to develop their thermal cloud, and if 
that is so, it is not unreasonable to treat their motion as one does in a solid. In doing so, one automatically makes 
the assumption of a harmonic approximation, but this is the best that one can do at present. 

The evaluation of H(t:,t) now becomes a straightforward matter and we shall briefly outline the method. For the 
moment let us forget the index <R on the summation sign in H(K,1) which we shall take care of later by intro
ducing a damping factor. Consider 

J2 (exppK»Ra(0)] exp[—^'K'R/3(/)])?' = X) (expp( K , R«) e x p ( — I K ' H ^ T 

XexppK-u a (0) ] exp[~^*K»u^(/)])r, (18) 

where Ra and R# are the equilibrium positions, and u«(0) and u^(0 are, respectively, the displacements of atoms a 
and 13 about their equilibrium positions. Now 

( e x p p K . u a ( 0 ) ] e x p [ - i K . u ^ ( 0 ] ) r = e x p [ - M a a ( 0 ) - M ^ ( 0 ) + 2 K ^ ( 0 ] , (19) 
where 

2 M ^ ( 0 = <CK-utt(0)][K.ni8(0]>r (20) 

(see Ref. 5). The displacement U.R(£) can be written as 

ujB(0 = E(ft/2ATiV«.)1/2e.{a. expf t (q -R-« .* ) ]+* .* exp[ -^ (q -R~co s / ) ]} , (21) 
s 

where the symbols have their well known meaning and the sum over s includes the sum over both wave-vector q's 
and the polarization of the vibration. Substituting (21) in (20) we have 

2Map(t) = 'E L ^ e x p p ( q - ( R a - R ^ ) ) - ^ c o s / ] , 
S JU=±1 

where 
h 1 / fous \ 

gsix= (K-es)
2—I coth ix ) . 

fx is + 1 for absorption and — 1 for emission of a phonon. Similarly, 

(expPK.R^(O)]exp[ - iK-R^(0] )T=exp[- -2M^(O)+2ikr^(0] . (24) 

The usual phonon expansion consists in writing 

exp[2Af «,(*)]= l+2Mafi(t)+$[2Mae(t)J+ • • •. (25) 

We shall in what follows retain only the first two terms of the above expansion, i.e., neglect two and higher phonon 
terms, which become significant only for very large values of K. In the co region of interest here their contribution 
is small. 

We now write 

<R 
N~l E <exp(fK.Rtt) expt-Mc-R/OV^flr-1 £ (expfrVR*) e x p ( - ^ . R ^ ) ) r e x p [ - | R ^ R ^ / i ? 2 ] , (26) 

(22) 

(23) 
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where we have introduced a smooth cutoff factor. We further make an approximation in which we replace R« and 
Rp on the right-hand side of (26) by R«(0) and R^(0). Now 

f | r | 2 1 r | r | 2 

/ e^rg(r) exp = — / e™" e x p £ (6(Ra(Q)--'Rfi(0)-T))Tdi 
J R2 NJ R2 a^ 

= N~l E ( e x p ^ . [ R a ( 0 ) - R ^ ( 0 ) ] ) r e x p [ - | R«(0)-R^(0) | 2 / £ 2 ] . (27) 

Therefore 
<R f | r | 2 

N-1 £ <e«-a«<r«-R/')r« / eiK'rg(x) exp J r . (28) 
«*fi J R2 

Using Eqs. (17)-(28), it follows that 

f f k l 2 f |r|2 ] 
H(K,t) = e~2M«» £ gsy.e-^A / 6*<^)"g(r) exp dt- \ eiK'Tg{t) e x p - di\, (29) 

«,M I . / R2 J R2 ) 

w h e r e e~2 J f (0) is the usual Debye-Waller factor, which 
in the limit T^>dz> becomes 

/ K2h2 6T\ 
e x p [ - 2 M ( 0 ) ] = e x p J, (30) 

\ 2MkBdD 0DI 

where 0D is the corresponding Debye temperature for 
a liquid. 

The parameter R in Eq. (29) is unknown. I t is cer
tainly of the order of a few interatomic distances. In 
the following discussion we shall take the limiting case 
of R —*oo and shall derive the correction terms depend
ing on R in the Appendix. As is seen from Eq. (All) of 
the Appendix, to estimate the correction one needs to 
know the third and higher derivatives of T ( K ) , which at 
present cannot be done with any reasonable accuracy 
from the x-ray data regarding T ( K ) . One can, however, 
evaluate the term in the curly brackets in (29) nu
merically using formula (A 17) (for details see Ap
pendix) ; but then it involves an enormous numerical 
computation and one loses all the transparency of the 
final formula for S(K,CO) in which we are really interested. 
For the present crude calculation, we shall be satisfied 
with the limiting case R—><*>. For this case (29), on 
using (15), becomes 

ff(K,0 = exp[ -2Af(0) ] 

x Z ^ ^ > W 8 l r ( K + q s ) - r ( K ) ] . (31) 
8,11 

Since we shall be interested in q<^K, we can make 
Taylor's expansion of T(K+q s) . After performing the 
angular average over the direction of qs we have 

r(K+qs)-r(K)=i?s
2[r"(K)+(2/|K|)r'(K)] 

+ t e r m s involving higher powers of qs (32) 

[see Eq. (A9)]. On using (32), (31) becomes 

ff(K,0 = e x p [ - 2 J f ( 0 ) ] 

XZ «.**-*"•'i?.*[T"(*)+ (2/1 k | )P'(K)] . (33) 

We shall consider the case of phonon absorption, i.e., 
J U = 1 . Also for all cos's of interest here fioos^2kBTy and 
in that case Eq. (23) simplifies to 

g..+i« (kBT/2NM) (K- e s ) 2 ( l / V ) . (34) 

On using (34), (33), for an isotropic case, becomes 

ff(ic,/) = exp[-2Af (0)] Z K 2 — — — 
q 12NM a>q

2 

X M T " ( K ) + T ' ( K ) V ^ . (35) 

For a solid in the Debye approximation 

E - > / " 2 ^ , (36) 
q 2 * W 0 

where V is the volume and we have used the linear 
dispersion relation q=oo/c, c being the mean velocity 
of sound. In a liquid we shall replace (36) by 

v r r 2wi 
£ - > / co2 exp Lfco, (37) 

where oom is the value of co for which there occurs a 
maximum in the assumed frequency spectrum in a 
liquid. One might identify this spectrum with the Fourier 
transform of the velocity autocorrelation function in a 
liquid.9 Now c is related to com by 

c=(8ir2»)-1/3a)m, (38) 

where n is the number density of particles. com is the 
parameter of our theory. Since com for a liquid is much 
less than that for the corresponding solid, the density 
of states in a liquid for small co's is very much greater 
than that in a solid. 

9 K. S. Singwi, A. Sjolander, and A. Rahman, Inelastic Scattering 
of Neutrons in Solids and Liquids (International Atomic Energy 
Agency, Vienna, 1963), Vol. 1, p. 215. 
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From (35) and (37) we have 

1 /•+" K2kBT 
/ <ria'H(K,t)dt=<r*M«»-

J —oo 2TT, 24TTVP 

2 

where p is the density in g/cc of the liquid. 
The total differential scattering cross section is given 

by the sum of Eqs. (1) and (2). Since we do not know 
SinG(K,a)) for a liquid, recourse has to be taken to 
models,1*10'11 of which the simplest is the simple diffusion 
model. We shall use the latter in this paper. Extension 
to the jump diffusion model10 is straightforward. Using 
Eqs. ( l)-(4) and Eqs. (14), (17), and (39) and the 
simple diffusion model for SincO^co), we have 

d2a k | 

dQdto ko I 

dine2 1 K2Z) 1 
— + [ i + r ( K ) ] 
acoh

2 J(k»2?)H-«*ir 

kBT I 2 

24TTV6 

kBT I 2 \ I 
+e-2M(o)K2 ( r " ( K ) - j — r ' ( K ) yl5-

2<"/<* . 
24TT2PC6\ | K | / J 

(40) 

In writing the above equation, we have neglected the 
recoil term in Sincfoco), which is indeed small for our 
case, and have assumed as before tha,tfico^2kBT. Equa
tion (40) is the basic equation of our paper. The second 
term in square brackets in (40) represents our correction 
to the convolution approximation. This term has a 
simple structure and exhibits an oscillatory behavior 
arising from the factor r " (K) + (2/1 K | ) I" (K) . This factor 
is negative for values of K corresponding to the peaks 
in T ( K ) , its largest negative value occurring at the first 
peak. In the vicinity of the peak in T ( K ) , the char
acteristic feature of this factor is that it rises sharply 
from a very small to a large positive value for a K value 
below that corresponding to the peak, and then falls 
sharply to a negative value at the peak and rises again 
to a positive value, continuing this oscillatory behavior. 
As K increases, the abruptness with which this function 
rises and falls obviously diminishes, as is apparent from 
the form of T(K) in a liquid. The above-mentioned 
features, as we shall see in Sec. VII, are reflected in the 
width of the "quasielastic" scattering as a function of K. 
The other interesting feature of this factor is its tem
perature dependence. The temperature dependence of 
F ( K ) is complicated. As the temperature increases, the 
peaks of T (K) move to somewhat lower values of K and 
get progressively smeared out, thus resulting in an 
appreciable change in the magnitude of the correction 
term. 

10 K. S. Singwi and A. Sjolander, Phys. Rev. 119, 863 (1960). 
11 A. Rahman, K. S. Singwi and A. Sjolander, Phys. Rev. 126, 

997 (1962). 

IV. WIDTH OF THE QUASIELASTIC SCATTERING 

The value of co at which the intensity falls to half its 
value at co=0 is, as follows from (40), determined by 
the equation 

X ( T " ( K ) H r'MjcoV-*"'"*, (39) i = -
\ | K | / I 

(K2L>)2 kBT 
exp[— KV]K 2 (K2D) 

(K2D)2+O>2 ' 24TTPC
! 

r"(K)+(2/|K|)r'(K) 

x-0 i n c 2 A e o h 2 + l + r ( K ) 
-coV-2w'^, (41) 

where we have put 2M(0) = K2a, a being the mean-
square amplitude of the thermal vibration of an atom. 
On putting 

X=U/K2D, (42) 

a n d 

X0 = O>m/2K2D, (43) 

(41) becomes 

where 
H (l+^+afa)*2*-*' './xo (44) 

and 

r^(K)+(2/|K|)r /(K) 
a (K) = e x p [ - K2<Z]K8 -B (45a) 

tfinc2/0coh2+l + r ( K ) 

B = kBTD*/24:TrpcK (45b) 

For every K value, Eq. (44) has to be solved numerically 
to determine x. 

Consider the case x<^,x0. Equation (44) then becomes 

2«(K)x4-x2[l-2a(K)]+l = 0. (46) 

For « (K) small enough that [ 4 « 2 ( K ) ~ 12O;(K)]<<C1, X is 

given by 
* « l + 2 a ( K ) . (47) 

We are always interested in the smallest root of Eq. 
(46). From (46) and (42) it follows that 

(AE-2K2D)/2K2D~2CC(K) , (48) 

where we have put 2co = AE, the full width at half-
height. Hence, whenever OJ(K) satisfies the above-
mentioned condition, the change in width relative to 
that given by simple diffusion is given by (48). For 
negative values of « ( K ) there always exists a solution 
of Eq. (46), but for positive values of « ( K ) there does 
not exist a solution of interest (such that x ̂  2) for 

a (K)^<w(K) = 0.086. 

Since CK(K) has both positive and negative values, it 
follows from (48) that the width as a function of the 
momentum transfer K will oscillate around the value 
2K2Dh given by the simple diffusion formula. This 
result is general and holds for all coherent liquids. The 
magnitude of the oscillations will, however, depend on 
the value of « ( K ) . The temperature dependence of « ( K ) 
is obviously very complicated. 
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From (44) we have 

/ 1 1 \ 2O>I/2(K) 

«(*) = ( exp :, (49) 
\l+x2 2x2/ o)m where 
d+x2 

X(K) = 2OOI/2(K)/2K2Z? , (50) 

and COI/2(K) is the half-width. 
At points of extremum in the half-width we have the 

condition 
<9COI/2(K)/(9K=:0, 

which on using (49) gives us the following equation 

3K 
•\na( 

4 / Ix2 \ 
K) = (1 1 

IKI\ x*-lJ 
(51) 

The occurrence of the logarithmic derivative in the 
above equation eliminates the uncertain constant B 
[Eq. (45b)]. Hence, the extrema in the width function 
do not depend on this constant in « ( K ) . 

V. REMARKS ABOUT SCATTERING NEAR THE 
CRITICAL POINT 

The phenomenon of scattering at the critical point 
of a liquid in the limit K —» 0 is well known by the name 
of critical opalescence and is studied using ordinary 
light. Here, we shall discuss the case of coherent neu
tron scattering near the critical point for not too large 
values of K. The region of large K values is not of much 
interest, since the structure in F ( K ) is nearly washed out 
with the exception of the first peak, in the vicinity of 
which it is still of considerable interest to study the 
scattering. As one approaches the critical point, the 
velocity of sound (because of com) would diminish. The 
absolute value of the function r " ( ic )+(2 / | i c | ) r / (K) 
would also decrease because of the broadening of the 
peak. The over-all magnitude of the correction term in 
(40) is hard to predict. I t should, however, be kept in 
mind that the validity of our formula in this region is 
questionable. These factors put together make the ex
perimental study of neutron scattering all the more 
interesting as one approaches the critical region. 

I t follows from the standard thermodynamic argu
ment that very near the critical region and in the limit 
K —» 0, T (K) has the form given by12 

l+T(K) = kBT/n(a+bK2), (52) 

where a and b are constants and n is the number density. 
Even for the smallest K values attainable in cold-neutron 
scattering experiments, it is very doubtful whether one 
could use formula (52). If, however, one uses this for
mula, it is a simple matter to calculate the scattering 
cross section using (40). 

VI. APPLICATION TO LIQUID ARGON 

We shall now apply the foregoing considerations to 
the specific case of liquid argon for the following rea
sons : (a) Brockhouse et al? have recently made a very 
careful study of the "quasielastic" scattering in liquid 
argon near the triple point and have analyzed their 
data in a way suitable for the direct application of the 
present formulation; (b) fortunately Gingrich and 
Tompson13 have also studied x-ray scattering in liquid 
argon near the triple point, thus making available the 
experimental values of T (K) as a function of K ; (c) liquid 
argon being a simple monatomic liquid with weak 
interatomic forces of the van der Waals type, one might 
expect that the self-motion of atoms would be more 
nearly described by the simple Langevin equation; and 
(d) finally, it is one of those liquids whose properties 
have been studied over a wide range of temperature and 
pressure, thus making it possible in the future, when the 
present theoretical considerations have been more firmly 
established, to make detailed and extensive neutron-
scattering calculations. 

Figure 1 represents a smooth curve drawn through 
the experimental values of 1 + T ( K ) as obtained by 
Gingrich and Tompson.13 Figure 2 is self-explanatory. 
The first derivatives of T(K) were obtained from the 
curves of Fig. 1 using the mirror method, and the same 
method was used to get the second derivatives from the 
curve for the first derivatives. Notice the behavior of 
the final T"(K)+(2/\K\)T'(K) curve, which will be 
reflected in the width of the "quasielastic" peak. The 
experimental accuracy of T(K) is such that the derived 
values of T " ( K ) cannot be relied on much, particularly 
in the region of K where it changes abruptly from a 
large positive to a large negative value; but what is of 
significance for our present purpose is the characteristic 
behavior of the function r" ( ic )+(2 / | i c | ) r ' ( i c ) as a 
function of K. 

FIG. 1. l + r ( K ) curve as a function of K (A-1) drawn smoothly 
through the experimental points of Gingrich and Tompson (Ref. 
13) obtained from x-ray scattering data for liquid argon at 
T=84.25 °K and P=0.710 atm. 

12 L. D. Landau and E. M. Lifshitz, Statistical Physics (Perga-
mon Press Ltd., London, 1958), p. 369. 

13 N. S. Gingrich and C. W. Tompson, J. Chem. Phys. 36, 
2398 (1962). 
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FIG.O2. Dotted curve represents (2/1 K | ) r ' (K) (A"^) as a function 
of K (A-1) obtained by the mirror method using the smooth curve 
of Fig. 1. Open circles denote r"(K) obtained from r'(K) curve 
using the same method. Solid curve represents r"(K)-r-(2/|ic|) 
Xr'(K)(A*9. 

In order to calculate x and hence the half-width from 
(44), we need to know the value of a in the Debye-
Waller factor exp(— K2#) and com. The velocity of sound 
c is related to cow through Eq. (38). The Debye tem
perature 6D for solid argon is 80 °K, and if we assume 
Mott 's formula14 we get for liquid argon at the melting 
point a Debye temperature of approximately 40°K, 
which on using formula (30) gives us a ̂ 0.2 A2. In fact, 
calculations were made for three different values, a= 0.1, 
0.2, and 0.25 A2. The parameter cow was chosen such that 
fiwm=0.2kBT. For this choice of com a reasonably good 
fit with experiment was obtained. I t was somewhat 
comforting to note that this choice of com was in fair 
agreement with the computer calculations of atomic 
motions in liquid argon by Rahman,15 who finds a 
broad maximum in the frequency spectrum of the 
velocity autocorrelation function in the range given by 
fk*)mtt0.25kBT. The value of the macroscopic diffusion 
constant Z)=2.0X10~5 cm2/sec near the triple point 
that we have adopted for our calculation is from a 
paper by Naghizadeh and Rice.16 The value of D used 
by Brockhouse et al2 is 1.53 X 10~5 cm2/sec. The density 
p of liquid argon at the triple point was taken as 1.4 
g/cc. With the above choice of the values of the pa
rameters and the constants, the value of the factor 
B = kBTDz/2^pcb in a(n) in Eq. (45) is fixed. We get a 
value of i? = 4XlO~52 (in proper units). The calcula
tions were, however, made for three different values, 
£ = 3X10-5? , 4X10-52 , and 5X10~52, and the best fit 

14 N. F. Mott, Proc. Roy. Soc. (London) A146, 465 (1934). See 
also L. S. Kothari, K. S. Singwi, and S. Viswanathan, Phil. Mag. 
2, 694 (1957). 

15 A. Rahman (to be published). 
16 J. Naghizadeh and S. A. Rice, J. Chem. Phys. 36, 2710 (1962). 

was obtained for the value 5X10~52 (in proper units). 
For argon17 <Zmc2/^coh2=0.8. 

VII. RESULTS AND DISCUSSION 

In Fig. 3(a) we have plotted the calculated full 
width AE at half-height as a function of K together 
with what one would get using the convolution ap
proximation. The open circles represent the experi
mental values of Brockhouse et al.2 as read from their 
published curve. The error bars of the experimental 
values are not indicated. The crosses in the figure 
denote the values calculated for i?=4X10~52 . With the 
choice of the parameters a=0.2 A2, fta>m=0.2kBT and 
£ = 5X10~52 (in proper units) (solid curve), Eq. (44) 
does not admit the desired solution for K = 1 . 7 A -1, in
dicating that the "quasielastic" peak has become so 
broad18 that the curve for S(K,O>) as a function of o> 
starts turning upwards before it attains half its value 
for co=0. Since it is not seen in experiment, this could 
probably arise from (a) the uncertainty in the values 
of the derivatives T ^ K ) and T / ; ( K ) in the region of K 
values (~1.7 A-1) where the T(K) curve rises very 
steeply, (b) the choice of the value of the parameter a, 
which is probably somewhat small, and (c) the neglect 
of the contribution of the terms involving R2. For the 
choice a=0.25 A2, fium=0.2kBT, and £ = 3X10-5 2 (in 
proper units), one obtains solutions for all K values, 
and the calculated points are plotted in Fig. 3(b), but 
the agreement with experiment is not so good. On the 
whole, judging from the crudeness of our calculations, 
the agreement with experiment is surprisingly good. 
We do not wish to stress this quantitative agreement 
in view of our basic assumptions, the approximations 
made, and the uncertainty involved in the values of 
the derivatives of T (K) ; but what we do wish to stress 
is the characteristic oscillatory behavior of the width 
as a function of K, which is in conformity with observa
tion. This behavior is partly dynamic and partly 
geometric, as is revealed by a closer examination of our 
correction term to the convolution approximation. The 
precise physical nature of the effect is, however, some
what obscure to us. 

From our assumed value of wm, we get for the mean 
velocity of sound a value of 187 m/sec. The measured 
longitudinal velocity of sound for co —> 0 is nearly 800 
m/sec. The velocity for transverse waves is always less 
than that for longitudinal waves. A low value of the 
mean velocity that we have obtained implies a large 
dispersion in the range co^l012/sec in liquid argon, 

17 G. E. Bacon, Neutron Diffraction (Oxford University Press, 
London, 1962), 2nd ed., p. 61. 

18 From the published data of Cocking, Inelastic Scattering of 
Neutrons in Solids and Liquids (International Atomic Energy 
Agency, Vienna, 1963), Vol. 1, p. 234, Fig. 4(c), on the "quasi-
elastic" scattering of 4.1-A neutrons by liquid sodium for 75° 
scattering angle and r=198°C, it appears to us that such a case 
perhaps does occur; and if our interpretation is correct, it would 
be interesting to repeat this experiment. 
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FIG. 3(a). Full width AE (meV) at half-height of the ^quasi-
elastic" peak as a function of the momentum transfer K (A-1) for 
liquid argon ( r = 84.5°K and p = 1.4 g/cc). The solid curve is 
drawn through the calculated points for the values of the pa
rameters a = 0.2 A2, £ = 5X10~52 (proper units). The crosses repre
sent the points calculated for 5=4X10~5 2 (proper units). The 
open circles are the experimental points of Brockhouse (et al. 
Ref. 2) as read from their published curve for r=84.5°K and 
P = 550 mm Hg. The curve &E = 2hv?D is calculated for Z>=2.0 
X10 fi cm2/sec. (b) Same as (a) except that the solid ocurve is 
now drawn for the values of the parameters a = 0.25 A2, B—3 
X10"52 (proper units), and fia)m = 0.2kBT. 

which might well be the case. Basically, the constant c 
as it occurs here should be interpreted through Eq. (38). 

VIII. REMARKS ON SCATTERING IN LIQUID LEAD 

Palevsky,3 using Be-filtered neutrons ( \ ^ 4 A ) , has 
studied the width of the "quasielastic" peak for 90° 
scattering angle as a function of temperature of liquid 
lead. His main conclusions are (a) that the width is 
much less than what one would expect for a simple 
diffusion model (Brockhouse and Pope4 have also 
arrived at somewhat similar conclusions) and (b) that 

the temperature variation of the width is much less 
than the temperature variation of the macroscopic 
diffusion constant. In fact, Palevsky3 finds that the 
activation energy for diffusion from his neutron meas
urements is almost half of that obtained from macro
scopic diffusion measurements. 

There are possibly two reasons for such a small width: 
(a) narrowing due to coherent effects and (b) that the 
mean-square displacement of lead atoms as a function 
of time is far from attaining its asymptotic value for 
times of importance for neutron scattering. The latter 
point has been discussed in detail by Rahman et al.19 

We shall here examine the former. For incident neu
trons of wavelength 4 A and scattering angle 90°, the 
K value corresponds to the position of the main peak in 
the T(K) curve. This would mean a large negative value 
for the factor r " (K)+(2 / |K | ) r ' (K) in (45). From (45) 
and (48), the approximate expression for the width at 
the peak in V (K) is 

AE^2K2D-exp(~-K2a)K10 

\T"(K)+(2/\K\)T'(K)\kBTD* 
X-

#inc 2 / acoh 2 +1+r (K) 6irpcb 
(53) 

The temperature dependence of the second term on the 
right-hand side of (53) is very complicated. As tempera
ture increases both the Debye-Waller factor and the 
geometrical factor in the second term on the right-hand 
side of (53) diminish, whereas the last factor increases. 
I t is physically reasonable to assume that since the 
density does not change much, and judging from the 
nature of these factors, the decrease is more than com
pensated by the increase in the value of the factor 
ksTD4:/6wpcb with temperature. Thus (53) predicts a 
temperature dependence of AE which is in the right 
direction. We have not attempted to make, for the 
present, a quantitative comparison with experiment for 
lack of necessary data. I t would be interesting to meas
ure the temperature dependence of the width for a 
value of K for which r " ( i c )+ (2 / |K | ) r ' (K) is large and 
positive. The sign of the second term in (53) is then 
positive. I t might also be mentioned that the general 
behavior of 5(K,W) as a function of K in liquid Pb 
observed by Brockhouse and Pope4 for not too large 
values of K is what we would expect from the considera
tions of this paper. I t is unfortunate for us that these 
authors have not expressed their data in terms of the 
width as a function of K, but we did not venture to 
do this. 

Recently, Cocking and Guner20 have studied the 
scattering of 4.0- and 6.2-A neutrons in liquid tin at 
240°C for various scattering angles. They have been 

19 A. Rahman, K. S. Singwi, and A. Siolander, Phys. Rev. 122, 
9 (1961). 

20 S. J. Cocking and Z. Guner, Inelastic Scattering of Neutrons 
in Solids and Liquids (International Atomic Energy Agency, 
Vienna, 1963), Vol. 1, p. 237. 
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mainly concerned with the energy transfer region fiw 
^>2fiK2D. Our formula can easily be extended to this 
case by neglecting the diffusive peak in Sinc(K,co) and 
making the usual phonon expansion for the wings. 
We shall defer this calculation to the future. We might 
mention that, in the one-phonon approximation, our 
formula for S(K,O)) predicts in general, for small energy 
transfers, large coherent effects for K values corre
sponding to the peaks (largest for the first peak) in 
the l + r ( K ) curve; these effects, however, disappear 
for large values of the energy transfer. 

IX. CONCLUSIONS 

The main conclusion of the present paper is that our 
extension of Vineyard's convolution approximation 
seems to account reasonably well for the known experi
mental facts regarding the coherent scattering of slow 
neutrons by liquid argon. The results should be appli
cable to all coherent monatomic liquids. The inter
ference effects in slow-neutron scattering are, as we have 
seen, the result of both the dynamical behavior and the 
typical geometrical arrangement of atoms in a liquid, 
and may indeed prove to be a very sensitive test of the 

theories of the liquid state. I t should be borne in mind 
that the simple diffusion model adopted in this paper 
for Sinc(K,co) is valid for only small K values. Extension 
of the present considerations to more complicated 
models for Smc(K,w) can be easily made. 

Future work ought to proceed in examining more 
critically the basic two assumptions outlined in Sec. 
I l l , and the significance and quantitative role of the 
parameter R introduced here. The present considera
tions must be regarded as only a first step towards 
understanding the finer details in coherent scattering of 
slow neutrons by a liquid. On the experimental side one 
would like to have a very precise study of the "quasi-
elastic" scattering in some typical monatomic liquids 
for different K values at small intervals and at different 
temperatures. Study of the coherent scattering in the 
critical region is no less interesting. 
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APPENDIX 
Define 

W( K ) = I eiK' rg(r) exp(-r2/R2)dt 

= / eiK-r(g(r)~g0) exp(-r2/R2)dr+g<> / eiK'T exp(-r2/R2)dr, 1° (Al) 

where go is the value of g(r) for r —->co. The parameter R would be of the order of a few interatomic distances. If 
g(t)—go becomes small for r<Rywe can expand the exponential exp(—r2/R2) in the first integral in (Al). Retaining 
terms of order 1/R2, we have 

R2J &f> exp(iK'r)[g(T)—g0y
2dr+go f exp(iK-r) exp(—r2/R2)dr, 

where 

r( < > - / • 
exp*Vr[g( r ) -g 0 ]^ r , 

which depends only on the magnitude of K. 
From (A3) we have 

1 d2 

(«ro 
| K | dK2 

r°° sin/cf 
K ) ) = - 4 7 r / r4— lg{r)-g{0)-]dr. 

Jo nr 

(A2) 

(A3) 

(A4) 

Using (A4) and performing the second integral in (A2), we have 

^ ( K ) = r (K)+( l / |K | i ? 2 ) [2 r ' (K)+ |K | r " (K) ]+gox s ' 2
J R 3 exp( - J R 2 | u | 2 /4 ) . (A5) 

Similarly, 

^ ( K + q ) = r ( K + q ) 4 - ( l / | K + q | i ? 2 ) [ 2 r ' ( K + q ) + | K + q | r " ( K + q ) ] + g o i r 8 ' 2 i ? 3 e x p ( - 7 ? 2 | K + q | 2 / 4 ) . (A6) 

Now 
T(K+q)-T(K) = j:iqi(,dV(K)/dKi)+iZiiqiq1<d'T{K)/dKidKi)+- • • , (A7) 
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making a Taylor expansion and retaining terms of order q2 only, or 

r (K+$)- r (K)= 
(q-K)ar(ic) 1 i ar(K) l 1 < 9 T ( K ) 

2 K 3 <9K 
•Kq-K)2 

l a2r(K) 

K | 2 <9K2 
(A8) 

(A9) 

(A10) 

| K | 5K 2 | K | 5K 

Performing the angular average over the directions of q for a given K we have 

r(K+q)-r(K)=^Cr"(K)+(2/|K|)r'(K)]+- • •. 
Similarly 

r ' ' ( K + q ) + ( 2 / | K + q | ) r ' ^ ^ 

Using (A9) and (A10) we have from (A5) and (A6) 

J F ( K + q ) - I F ( K ) ^ 2 ^ ^ ^ r ' " (K)]+ . • • 
L |K| J 6R2L |K| J 

+go7r 3 / 2 i ^exp( -K 2 ^ (All) 

For large R it is the first term on the right-hand side of (All) which is important. In the text we have used the 
approximation R —>oo. Terms containing go play a part only in the neighborhood of K ~ 0 and are, therefore, un
important for our purpose. For finite values of R, an estimate of the correction is possible only if one has the 
knowledge of the higher derivatives of T (K) , which for the present cannot be estimated from x-ray data with any 
reliability at all. We only hope that this correction is small for reasonable values of R. A very crude estimate shows 
that for R^ 10 A (a distance roughly equal to twice the interatomic distance), and for q's of interest, the second 
term in (All) is small compared to the first. 

A somewhat better approach, but involving a lot of numerical work, would be not to expand the exponential 
in (Al). We outline this procedure below. We shall forget the second term in (Al) for the reason mentioned before. 
We write 

W(K) = J exp(fK.r)[g(r)«go] exp(-r>/£2). 

Using the convolution theorem of the Fourier transforms we have 

where 

w(*)=—[T<tiF(*-k)dk, 

F( K - k ) = / e^
K~k) T exp(-r2/R2)dr 

(A12) 

(A13) 

(A14) 

= 7r3'2i?3 exp [ - | K - k 12i?2/4]. 

Using (A 14) in (A 13) and performing the angular integration we have 

R i r ° f 
W(K)-- ifer(k)|exp| 

2\Ar |K|7Q 1 

r R2 

—(n-k)2 

4 
-exp -(K+k)2 \\dk. (A15) 

Similarly one can show in a straightforward manner that 

R 1 r ° 1 /•*+* 
W(K+q) = / kr(k)dk- / { e x p [ ~ R 2 ^ - ^ ) 2 / 4 ] - e x p [ - ^ 2 ( ^ + ^ ) 2 / 4 ] } J / , (A16) 

2\Ar | K U 0 2qJ \k-.q\ 2\/ir \K\J0 2qJ \k-.q{ 

where the bar on PF(K+q) denotes the average over the directions of q. Hence, 

W(K+q)~W(K) = 
R 1 1 

2-v/' 

i r 
r- kr(k)dk— 
w KJ o 2qJ _ g 

expZ~~lR2(K-k+x)22 

-exp[- i^ 2 ( /c+^+x) 2 ] -{exp[-i^2(fc-^)2]~exp[-ii?2(/c+^)2]} dx. (A17) 
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T(k) is known experimentally and hence (A17) can be numerically evaluated for a given K for different q's using 
R as a parameter. No doubt formula (A 17) is valid for all R, but if we follow the above procedure we no more 
have an explicit formula for the width. Even formula (A17) does not circumvent the difficulty of not knowing 
T(K) very accurately. To see this we proceed to make some approximations. 

R 1 r° r R2 - i l r+*f r R2 n 1 
W(K+q)-W(K)~ / kT(k)dkexp\ (K-k)2 \— exp [%2+2(K-k)x~] - 1 \dx. (A18) 

Expanding the exponential in the curly brackets and integrating we have 

R* a2 1 r r R2 n 
W(K+q)-W(K)~ / * r (*)exp (K-k)2 UR2(K-k)2-lJdk, (A19) 

2\/w K 12J0 L 4 J 

where we have retained terms up to order q2 only. From a scrutiny of the integrand one sees the importance of the 
weighting factors. I t is obvious that if the function T (K) is not known accurately in the region of K values where 
the function is rising rapidly, we would introduce a large error in the value of the integral. I t is also clear that one 
obtains a large negative value for the integral for that value of K for which there occurs a peak in T ( K ) . Detailed 
numerical computation would be justified when more accurate experimental data are available. 

P H Y S I C A L R E V I E W V O L U M E 1 3 6 , N U M B E R 4A 16 N O V E M B E R 1 9 6 4 

Theory of the Nuclear Magnetic Resonance Chemical Shift of Xe in Xenon Gas* 
FRANK J. ADRIAN 

Applied Physics Laboratory, The Johns Hopkins University, Silver Spring, Maryland 
(Received 26 June 1964) 

A theoretical study is made of the density-proportional paramagnetic shift of the resonant magnetic field 
observed in nuclear magnetic resonance studies of Xe129 in pure xenon gas by Streever and Carr. The theory is 
based on a computation of the chemical shift in "diatomic molecules" formed by colliding Xe atoms, includ
ing the effects of van der Waals and exchange interactions on the wave function of the colliding atoms. The 
results of this calculation show that only the exchange interactions between the colliding atoms make a 
significant contribution to the chemical shift. When averaged over the various types of collisions, the follow
ing value is obtained for the shift in the resonant field: A//= — 2.85(10)~7Hp, where H is the field strength 
and p is the density in amagats. This is in order-of-magnitude agreement with the observed result: AH 
= -4.3(io)-yy. 

I. INTRODUCTION a pair of colliding Xe atoms, Ramsey's theory of mag-

NUCLEAR magnetic resonance studies of Xe 1 ^ *etic shielding connects the chemical shift and the 
( 7 = | ) in pure xenon gas at high pressures have nudear-spm rotational coupling constant.* The nuclear-

yielded two interesting and related results.1'* First, the s ? m rotational coupling is a potential relaxation mecha-
spin-lattice relaxation time, although inversely pro- nism because it permits the nuclear spins to exchange 
portional to the density of the gas as expected,* was angular momentum with the rotational momentum of 
much too short to be accounted for by the relaxation t

i
h e C0}Ml^ a t 0 I f ; Torrey showed that if one assumed 

mechanism of magnetic dipole-dipole interactions be- ^ a t ^ observed shift in the resonant field was due to 
tween the nuclei of colliding atoms.* Secondly, there was c * e m i ca l shifts m diatomic molecules of colliding Xe 
a paramagnetic shift of the resonant value of the mag- a t o m f> a n d . f e d t h e experimental value of the shift 
netic field, which was proportional to the density of the together with Ramsey s formula to determine the 
gas and to the magnetic field strength. nuclear-spin rotational coupling constant, then one 

The relation between these results was established by obtained a computed value for the Xe™ relaxation time 
Torrey,3 who pointed out that in a diatomic molecule, w h l d l w a s m § o o d agreement with experiment. 
which may be used as an approximate representation of i Therefore, the sole remaining task m connection with 

this problem is to compute the chemical shift expected 
* Work supported by the U. S. Bureau of Naval Weapons, De- for a pair of colliding Xe atoms as a function of separa-

partment of the Navy, under Contract No. NOw62-0604-c. f- J f whe ther <5iirh a shift a v e r t e d over all 
1 R . L. Streever and H. Y. Carr, Phys. Rev. 121, 20 (1961). n o n > a n a t 0 s e e w n e m e r s u c n a s m i t averaged over all 
2 E . R. Hunt and H. Y. Carr, Phys. Rev. 130, 2302 (1963). 
3 H. C. Torrey, Phys. Rev. 130, 2306 (1963). 4 N. F. Ramsey, Phys. Rev. 78, 699 (1950). 


